skip to main content


Search for: All records

Creators/Authors contains: "Bunting, Philip C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. We report a rare example of a mixed-valence iron compound with an FeNNFe core, which gives insight into the structural, spectroscopic, and magnetic influences of single-electron reductions and oxidations. In the new compound, the odd electron is localized as judged from Mössbauer spectra at 80 K and infrared spectra at room temperature, and the backbonding into the N 2 unit is intermediate between diiron( i ) and diiron(0) congeners. Magnetic susceptibility and relaxation studies on the series of FeNNFe compounds show significant magnetic anisotropy, but through-barrier pathways enable fairly rapid magnetic relaxation. 
    more » « less
  4. null (Ed.)
    Orbital angular momentum is a prerequisite for magnetic anisotropy, although in transition metal complexes it is typically quenched by the ligand field. By reducing the basicity of the carbon donor atoms in a pair of alkyl ligands, we synthesized a cobalt(II) dialkyl complex, Co(C(SiMe 2 ONaph) 3 ) 2 (where Me is methyl and Naph is a naphthyl group), wherein the ligand field is sufficiently weak that interelectron repulsion and spin-orbit coupling play a dominant role in determining the electronic ground state. Assignment of a non-Aufbau (d x 2 –y 2 , d xy ) 3 (d xz , d yz ) 3 (d z 2 ) 1 electron configuration is supported by dc magnetic susceptibility data, experimental charge density maps, and ab initio calculations. Variable-field far-infrared spectroscopy and ac magnetic susceptibility measurements further reveal slow magnetic relaxation via a 450–wave number magnetic excited state. 
    more » « less